skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zoltán_Csukás, Károly"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a major update to the Simulating eXtreme Spacetimes (SXSs) Collaboration’s catalog of binary black hole (BBH) simulations. Using highly efficient spectral methods implemented in the Spectral Einstein Code (SpEC), we have nearly doubled the total number of binary configurations from 2018 to 3756. The catalog now more densely covers the parameter space with precessing simulations up to mass ratioq = 8 and dimensionless spins up to | χ | 0.8 with near-zero eccentricity. The catalog also includes some simulations at higher mass ratios with moderate spin and more than 250 eccentric simulations. We have also deprecated and rerun some simulations from our previous catalog (e.g. simulations run with a much older version ofSpECor that had anomalously high errors in the waveform). The median waveform difference (which is similar to the mismatch) between resolutions over the simulations in the catalog is 4 × 10 4 . The simulations have a median of 22 orbits, while the longest simulation has 148 orbits. We have corrected each waveform in the catalog to be in the binary’s center-of-mass frame and exhibit gravitational-wave memory. We estimate the total CPU cost of all simulations in the catalog to be 480 000 000 core-hours. We find that using spectral methods for BBH simulations is over 1000 times more efficient than previously published finite-difference simulations. The full catalog is publicly available through thesxsPython package and athttps://data.black-holes.org . 
    more » « less